RC Low-Pass Filter Response Interactive Calculator

RC Low Pass Filter Circuit

Cut-Off Frequency:

Capacitance: 1

Resistance: 1


RC Low-Pass Filter Interactive Calculator

This tool allows you to visualize the frequency response of a first-order passive RC low-pass filter. It shows the magnitude response in decibels (dB) versus the frequency in Hertz (Hz) passing through the filter.

A vertical line designates the filter's cut-off frequency at wherever the magnitude cuts through -3dB. If that frequency happens to be outside the audio band (20 - 20kHz) then the line will be out of view by default.

How to use the RC Low-Pass Filter Interactive Tool

There are two slider controls, one for the resistance value and one for the capacitance value. Swipe the slider to the left or right to change the capacitance or resistance value.

The range of each slider control is based on unit prefixes. For capacitance, select uF, nF or pF. For resistance, you have ohms, kOhms, and MOhms.

The plot should automatically update when you:

  • choose a different unit prefix range, or
  • change the value with the slider control.

The cut-off frequency, or -3dB frequency, is updated along with the chart.

RC Low-Pass Filter Calculations

There are only 2 calculations involved in this tool: the cut-off frequency and the magnitude/frequency response in dB.

Cut-Off Frequency

For computing the cut-off frequency, the tool uses the following equation:

RC filter cutoff frequency
RC Filter Cut-off (-3dB) frequency equation.

Magnitude/Frequency Response

To calculate the magnitude/frequency response of the low-pass RC filter, the tool uses the following equation (derived below):

Transfer function of a low-pass filter.
Transfer function of a low-pass filter.

Passive RC Filter Transfer Function Derivation

You can construct an RC low-pass filter using just two components: a resistor and a capacitor. The input is fed into the resistor, and the output is taken between the resistor and capacitor. This resembles a voltage divider, just with a capacitor in the place of "R2".

RC Low Pass Filter Circuit
RC Low-Pass Filter circuit.

So, we can probably get away with using an equation that's similar to the standard voltage divider circuit. As a reminder, here's the voltage divider equation:

Equation for the voltage divider. V out equals R2 over R1 plus R2, all multiplied by voltage in.
The voltage divider equation.

Modifying this slightly gives us a ratio of output to input (which is the mathematical definition of transfer function):

Voltage divider transfer function.
Voltage divider transfer function.

Of course, we don't have two resistors. Instead, R2 is replaced with a capacitor C. That means we need to shift our equation from using resistance values to using impedance values.

Voltage divider equation for an RC circuit.
Voltage divider equation for an RC circuit, calculated using impedance.

Impedance is the effective resistance of an electrical circuit, denoted using the letter Z. The top of this equation is asking for the impedance of only the capacitor (Zc). The bottom part of the equation asks for the impedance when the resistor is in series with the capacitor (Zr + Zc).

Impedance and Reactance of a Capacitor

The impedance of a capacitor is usually expressed as an imaginary number and involves the calculation of capacitive reactance (Xc). Wikipedia defines capacitive reactance as a quantity that describes the "opposition to the change of voltage" across the capacitor.

Reactance of a capacitor.
Reactance of a capacitor.

The impedance, Zc, of a capacitor is expressed as:

Impedance of a capacitor.
Impedance of a capacitor.

From the equation above, a capacitor has frequency-dependent reactance and impedance. So it's ability to "oppose" changes in voltage varies with the frequency of the voltage signal across it.

Impedance of a Resistor

The impedance of a resistor is simply the resistor's resistance value. There's no frequency-dependence involved with resistive impedance:

Resistive impedance is the the resistor's resistance value.
Resistive impedance is the the resistor's resistance value.

Impedance of a Resistor and Capacitor in Series

At this point we have the impedance for a resistor (ZR) and the impedance of a capacitor (ZC). The impedance of a resistor and capacitor in series is:

Impedance of a resistor and capacitor in series.
Impedance of a resistor and capacitor in series.

Transfer Function of the Passive RC Low-Pass Filter

Based on the above, the transfer function of a passive first-order RC low-pass filter is:

Passive RC Low-Pass Filter Transfer Function
Passive RC Low-Pass Filter Transfer Function

For us, the transfer function written like this isn't very useful. Instead, we want to know the magnitude of the transfer function. That will give us the actual ratio without having to deal with imaginary numbers.

Mathematically, this means we need to convert the cartesian form (a + jb) of the complex numbers to their magnitude-phase form. Read more on the process.

For the numerator, the cartesian form can be rewritten as:

Cartesian form of numerator imaginary number.
Cartesian form of numerator imaginary number.

And the magnitude of the numerator is the square-root of the sum of the squares of a and b. In this case, it ends up equating to the reactance of the capacitor:

The magnitude of the numerator is simply the reactance of the capacitor.
The magnitude of the numerator is simply the reactance of the capacitor.

For the denominator, the cartesian form is:

Cartesian form of denominator imaginary number.
Cartesian form of denominator imaginary number.

The magnitude of the denominator is therefore the sum of the squares of the resistance and reactance:

The magnitude of the denominator for the RC Low-Pass transfer function.
The magnitude of the denominator for the RC Low-Pass transfer function.

Magnitude of the RC Low-Pass Transfer Function

Put everything together, we have the following equation for the magnitude of the RC low-pass transfer function:

Magnitude of an RC Low-Pass filter.
Magnitude of an RC Low-Pass filter.

Converting to Decibels

The tool calculates the magnitude of the RC low-pass transfer function using the equation above. Then, it converts that value to the more conventional decibel scale using the following equation:

Magnitude of a first-order passive RC filter converted to decibel scale.
Magnitude of a first-order passive RC filter converted to decibel scale.

Meet the Author:

Other Calculators from Stompbox Electronics